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Abstract: D-Amino acid oxidase (DAAO) catalyzes the oxidation of
D-amino acids including D-serine, a full agonist at the glycine site of
the NMDA receptor. A series of benzo[d]isoxazol-3-ol derivatives were
synthesized and evaluated as DAAO inhibitors. Among them, 5-chloro-
benzo[d]isoxazol-3-ol (CBIO) potently inhibited DAAO with an IC50

in the submicromolar range. Oral administration of CBIO in conjunction
with D-serine enhanced the plasma and brain levels of D-serine in rats
compared to the oral administration of D-serine alone.

The preclinical and clinical evidence supporting the role of
NMDAa receptor hypofunction in schizophrenia has prompted
clinical trials of agents that enhance NMDA receptor function.1

For example, schizophrenic patients receiving D-serine, a full
agonist at the glycine site of the NMDA receptor, with
concomitant neuroleptic therapy have shown significant im-
provements in their positive, negative, and cognitive symptoms.2

Furthermore, reduced D-serine levels were reported in the serum
and cerebrospinal fluid of schizophrenic patients.3,4

In animals, however, D-serine is believed to be metabolized
substantially by D-amino acid oxidase (DAAO), diminishing its
oral bioavailability.5 In addition, at high doses, D-serine is
reported to cause selective necrosis to the pars recta region of
the renal proximal tubules in the rat.6 The mechanism of
D-serine-induced nephrotoxicity is believed to be associated with
oxidative stress caused by hydrogen peroxide, a byproduct of
DAAO-mediated metabolism of D-serine.7

These findings prompted us to identify small molecule DAAO
inhibitors that can be coadministered with D-serine to minimize
its metabolism by DAAO. DAAO inhibition should not only
improve bioavailability of D-serine but also reduce its nephro-
toxic effects. This paper describes the synthesis of a series of
small molecule DAAO inhibitors based on a benzo[d]isoxazol-
3-ol core structure and the in vivo effects of DAAO inhibition
on D-serine pharmacokinetics.

Using a fluorescence-based DAAO assay,8 we screened a
large number of compounds for their ability to inhibit DAAO
and found that 6-chlorobenzo[d]isoxazol-3-ol (CBIO) potently
inhibits DAAO with an IC50 of 188 nM.9 Subsequent kinetic
studies showed that CBIO is a competitive inhibitor with respect
to D-serine with a Ki of 100 nM.

We tested other structurally related compounds, muscimol,
(S)-AMPA, benzo[d]isoxazol-3-ol (BIO), 6-chloro-3-methoxy-
benzo[d]isoxazole (CMBI), and 4,5,6,7-tetrahydrobenzo[d]is-
oxazol-3-ol (THBIO). All of these compounds except BIO
exhibited negligible DAAO inhibition.

These findings led us to speculate that CBIO inhibits DAAO
in a mode similar to that of benzoic acid, a prototype competitive
DAAO inhibitor (Ki ≈ 16 µM).10 Figure 1A illustrates a crystal
structure of DAAO complexed with benzoic acid.11 As il-
lustrated in Figure 1B, we propose that the isoxazole group of
CBIO plays a role similar to the carboxylate group of benzoic
acid, forming a critical hydrogen bond network with Arg283
and Tyr228. This explains the loss of DAAO inhibitory potency
observed in CMBI. The benzene ring of CBIO is believed to
lay parallel to the flavin ring with Tyr224 on the opposite side
of the benzene ring, leading to strong π-π stacking interactions.
This may explain the negligible DAAO inhibition achieved by
a saturated analogue, THBIO, due to its inability to form these
interactions. These preliminary biological results prompted the
synthesis of a variety of benzo[d]isoxazol-3-ols to evaluate
structure-activity relationships within this class of compounds.

Our initial attempt to synthesize benzo[d]isoxazol-3-ol de-
rivatives 3 involved the formation of N-hydroxysalicylamides
2 from salicylic acid methyl esters 1 (Scheme 1). Cylization of
2 by the treatment with thionyl chloride (step b)12 or carbonyl
diimidazole (step c),13 however, afforded undesired product 4
or 5, respectively, as major products, providing 3 in low yields.

To circumvent the formation of these byproducts, we
developed an alternative method that utilizes 2-fluorobenzoyl
chlorides 6 and N-(2,4,6-trimethoxybenzyl)hyroxylamine 7
(Scheme 2). Coupling of 6 and 7 afforded N-hydroxybenzamide
derivatives 8. Subsequent treatment with potassium carbonate
followed by deprotection yielded benzo[d]isoxazol-3-ol deriva-
tives 3.
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Figure 1. (A) Schematic illustration of the active site of DAAO in
complex with benzoic acid. (B) Proposed model of CBIO bound to
DAAO.
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A large number of benzo[d]isoxazol-3-ols were synthesized
using one of the three methods described above and tested for
their ability to inhibit DAAO. Table 1 summarizes in vitro
DAAO inhibitory data of these compounds.

In general, larger substituents on the benzene ring caused a
significant increase in IC50 values. Smaller groups are better
tolerated especially at positions 5 and 6. Compounds with similar
potency to CBIO have small substituents at one of these
positions as represented by 3c, 3f, 3g, and 3j.

These observations are in a good agreement with DAAO’s
preferred substrate specificity for D-amino acids bearing hy-
drophobic side chains up to four carbon atoms long or compact
ring systems.14 Our SAR analysis coupled with previous findings
suggests that the active site pocket of DAAO is of limited space

and only accommodates substrates or inhibitors of moderate size.
This may pose a challenge to further optimization of benzo[d]
isoxazol-3-ol-based DAAO inhibitors because minor structural
modifications are unlikely to generate an additional hydrophobic
interaction at the active site that could contribute to a higher
affinity for DAAO.

To assess the effects of DAAO inhibition on plasma levels
of D-serine in rats, D-serine was given orally with or without
CBIO, and plasma samples were analyzed for D-serine levels
using an enantiospecific bioanalytical method.15

As shown in Figure 2, coadministration of CBIO (30 mg/
kg) markedly enhanced the plasma levels of D-serine in rats
compared to D-serine alone treatment. The results demonstrate
that an orally administered DAAO inhibitor can enhance the
oral bioavailability of coadministered D-serine.

To assess whether the increased plasma concentrations of
D-serine would reflect the extracellular D-serine levels, we treated
rats with oral D-serine +/- CBIO and analyzed microdialysis
samples from the prefrontal cortex for D-serine concentrations.15

As shown in Figure 3, oral D-serine increased the extracellular
D-serine levels by 25% compared to the basal levels. At some

Scheme 1. Synthesis of Benzo[d]isoxazol-3-olsa

a Reagents and conditions: (a) hydroxylamine hydrochloride, KOH,
methanol, room temp, 20-95%; (b) pyridine, thionyl chloride, THF, room
temp, 27-37%; (c) carbonyl diimidazole, reflux, 1-33%.

Scheme 2. Synthesis of Benzo[d]isoxazol-3-olsa

a Reagents and conditions: (a) triethylamine, dichloromethane, room
temp, 45-60%; (b) potassium carbonate, DMF, 120 °C, 47-99%; (c)
triisopropylsilane, TFA, dichloromethane, room temp, 12-61%.

Table 1. Inhibition of DAAO by Benzo[d]isoxazol-3-ol Derivatives

compd R4 R5 R6 R7 IC50 (µM)a

BIO H H H H 1.88 ( 0.00
3a CF3 H H H >100
3b F H H H 7.82 ( 0.96
3c H Br H H 0.599 ( 0.006
3d H I H H 1.51 ( 0.12
3e H NO2 H H 2.95 ( 0.15
3f H H F H 0.444 ( 0.032
CBIO H H Cl H 0.188 ( 0.001b

3g H H CH3 H 0.269 ( 0.013
3h H H OMe H 2.57 ( 0.27
3i H H OEt H >100
3j H H NO2 H 0.722 ( 0.024
3k H H CF3 H 5.00 ( 0.24
3l H H CF3 F >100
3m H H H F 23.0 ( 0.3
3n H H H CH3 >100
a Values are the mean ( SE of duplicate experiments. b n ) 4.

Figure 2. Effects of CBIO on rat plasma levels of D-serine following
oral administration of D-serine. Male SD rats were administered D-serine
(30 mg/kg, po) or D-serine (30 mg/kg, po) and CBIO (30 mg/kg, po).
Each point shown is the mean ( SD (n ) 4).

Figure 3. Effects of CBIO on rat brain levels of D-serine following
oral administration of D-serine. Male SD rats were administered D-serine
(30 mg/kg, po), CBIO (30 mg/kg, po), or D-serine (30 mg/kg, po) and
CBIO (30 mg/kg, po) at t ) 0 min. D-Serine levels are expressed as
percent of the basal level. Each point shown is the mean ( SD (n )
4).
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points, the extracellular levels of D-serine following coadmin-
istration of CBIO (30 mg/kg) increased by more than 60%
compared to the basal levels.

Figure 3 also shows that oral administration of CBIO alone
did not affect the extracellular levels of D-serine. Therefore, the
enhancement of D-serine levels in the prefrontal cortex following
coadministration of D-serine and CBIO is likely due to increased
systemic D-serine levels because D-serine is capable of penetrat-
ing the blood-brain barrier.17 One could attribute CBIO’s
inability to autonomously enhance D-serine levels in the brain
to its poor blood-brain barrier (BBB) permeability.

Interestingly, a recent report from Dr. Adage’s group showed
a slight increase in D-serine levels in rat cortex and midbrain
following intravenous administration of a pyrazole-3-carboxylate
based DAAO inhibitor alone.16 This effect may be due to its
superior ability to penetrate the blood-brain barrier. It has been
reported, however, that there is little overlap in distribution of
DAAO and NMDA receptors in the brain.18 Therefore, even a
brain-penetrable DAAO inhibitor may not be able to signifi-
cantly enhance NMDA receptor-mediated neurotransmission by
itself.

Our study indicates that coadministration of D-serine and a
DAAO inhibitor represents a more effective approach for
delivering D-serine to the site of its action. Inhibition of DAAO
should also reduce oxidative stress and reduce nephrotoxicity.7

Pharmacological evaluation of D-serine/CBIO coadministration
is currently underway using animal models of schizophrenia.
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